
Seminar: Programming Language Concepts

Recursion

One of the classic programming problems that is often solved by recursion is the towers

of Hanoi problem. A good explanation and walkthrough are provided by Cormen &

Balkcom (n.d.) - the link is in the reading list. (the code they used for their visual

example is provided on their website as well).

• Read the explanation, study the code and then create your own version using

Python (if you want to make it more interesting you can use asterisks to

represent the disks). Create a version that asks for the number of disks and

then executes the moves, and then finally displays the number of moves

executed.

• What is the (theoretical) maximum number of disks that your program can

move without generating an error?

• What limits the number of iterations? What is the implication for application

and system security?

• # Recursive Python function to solve tower of hanoi

• # n = Number of list to be moved

• # from_stick = Stick where the disc is present

• # to_stick = Stick where the disc is to be moved

• # aux_stick = Auxilliary stick, the remaining one

•

•

• def TowerOfHanoi(n, from_stick, to_stick, aux_stick):

• if n == 0:

• return

• TowerOfHanoi(n-1, from_stick, aux_stick, to_stick)

• print("Move disk", n, "from stick", from_stick, "to stick", to_stick)

• TowerOfHanoi(n-1, aux_stick, to_stick, from_stick)

•

•

• # Driver code

• n = 50

•

• # A, C, B are the name of sticks

• TowerOfHanoi(n, 'A', 'C', 'B')

•

• # Contributed By Harshit Agrawal

The minimum number of moves required to solve the Tower of Hanoi is determined by

the following formula: 2^n - 1. Therefore, the time complexity is 0(2^n). Thus, if 64 disks

must be moved, this would take 2^64 - 1 seconds, equivalent to 584,542,046,090.6263

years (365.25 days per year). Fun fact: The sun has only 7 billion years to exist before it

goes supernova, at which point the world would cease to exist. The application can only

move a realistic amount of discs; otherwise, the program will never end, or the system

will crash. As a result, it has negative aspects to the security since the attacker can use

this weakness and cause a crash or other extensive problems for the system

(Khanacademy, 2022).

Regex

The UK postcode system consists of a string that contains a number of characters and

numbers – a typical example is ST7 9HV (this is not valid – see below for why). The

rules for the pattern are available from idealpostcodes (2020).

Create a python program that implements a regex that complies with the rules provided

above – test it against the examples provided.

Examples:

M1 1AA
M60 1NW
CR2 6XH
DN55 1PT
W1A 1HQ
EC1A 1BB

How do you ensure your solution is not subject to an evil regex attack?

→ Solution on GitHub! https://github.com/gicanon/regexPostcode

Regex command: "^[A-Z]{1,2}[0-9R][0-9A-Z]? [0-9][ABD-HJLNP-UW-Z]{2}$

Evil Regex is a regex pattern which can get stuck on manipulated input. The attacker

injects the evil Regex in order to make the system vulnerable. Evil Regex contains a

group with repetitions. Examples:

• (a+)+

• ([a-zA-Z]+)*

• (a|aa)+

• (a|a?)+

• (.*a){x} for x \> 10

https://github.com/gicanon/regexPostcode

By entering the input aaaaaaaaaaaaaaaaaaaaaaaa! The system is vulnerable and can

get stuck with the Regex above (Weidman, 2022). Hence, it is not subject to an evil regex

attack.

References:

Khanacademy, 2022. Towers of Hanoi. Available from:

https://www.khanacademy.org/computing/computer-science/algorithms/towers-of-

hanoi/a/towers-of-hanoi [Accessed 13 October 2022].

Weidman, A. (2022) Regular expression Denial of Service - ReDoS Author: Adar

Weidman. Available from: https://owasp.org/www-

community/attacks/Regular_expression_Denial_of_Service_-_ReDoS

[Accessed 11 October 2022].

	Seminar: Programming Language Concepts
	Recursion
	Regex
	The UK postcode system consists of a string that contains a number of characters and numbers – a typical example is ST7 9HV (this is not valid – see below for why). The rules for the pattern are available from idealpostcodes (2020).
	Create a python program that implements a regex that complies with the rules provided above – test it against the examples provided.
	Examples:
	M1 1AA
	M60 1NW
	CR2 6XH
	DN55 1PT
	W1A 1HQ
	EC1A 1BB
	How do you ensure your solution is not subject to an evil regex attack?
	(Solution on GitHub! https://github.com/gicanon/regexPostcode
	Regex command: "^[A-Z]{1,2}[0-9R][0-9A-Z]? [0-9][ABD-HJLNP-UW-Z]{2}$

